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Abstracl. We calculate the trends in the Jahn—Teller (JT) parameters of the Si vacancy as a
function of the breathing mode coordinate, Using ab fitio local-density-functional theory
we find the couplings between the JT modes and the breathing mode 1o be significant.
Since the breathing mode coordinate is very sensitive to pressure we predict a pressure-
sensitive JT contribution to the effective clectronic correlation energy U. Furthermore
we find that the tetragonal JT energy increasingly dominates over the trigonal energy as
the pressure increases due to a softening of the tetragonal spring constant. We introduce
an approximation to deal with the spurious supercell-induced. dispersion and splittings.

1. Background

The Jahn-Teller OT) and quasi-JT systems make up a peculiar class of point defects.
In these a symmetry breaking occurs for a charge state in which a degenerate or
quasi-degenerate set of localized electronic levels is partially occupied [1]. One of
the simplest such defects is the Si vacancy which has served for many years as a
prototypic IT system to study. In this contribution we extend previous work on the JT
properties of the vacancy to include effects of pressure {2]. Readers who are familiar
with the Si vacancy and are not interested in the details of our calculations may skip
to section 5.

Let us review some relevant facts about the Si vacancy (for a thorough review see
[3] and [4]) using the one-electron picture, which experiment finds to be accurate [3].

It is known that the four Si dangling-bond orbitals combine to form a filled a,
symmetric state in the valence band and a triply degenerate state of t, symmetry in
the fundamental gap. When filling the latter states, a IT distortion occurs. There
are twelve distortions possible for the vacancy nearest neighbours (we will consider
only these local distortions, similar to Messmer and Watkins [5]). Six of these
correspond to overall translations and rotations and need not be considered (these
only change the relationship between first- and second-nearest neighbours, which we
also do not consider in the local approximation). The others are a breathing mode,
two degenerate tetragonal distortions and three degenerate trigonal distortions. The
trigonal and tetragonal distortions break the Ty symmetry. This gives us an electronic
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energy change which is linear in the distortion, while the energy cost from the lattice
is quadratic in the distortion. The Hamiltonian is usually written

H=ks*{2 4+ nVx 4}

where k is the mode spring constant, » is the distortion, V' is the JT potential
and n (= 0, 1,2) 5 the number of electrons in the symmetry-broken state. The
Hamiltonian is minimized at ¢ = —nV//k with a minimum energy of

Emin = —('nV)Z/Zk. (2)
The IT contribution to the effective electronic correlation energy Uy is
U = Epin(n =0} + Egp(n=2) — 2Epu(n=1) = -V%/k.  (3)

This contribution was predicted to possibly lead to an overall negative effective
correlation energy [6] and this is consistent with experimental data {3).
There are at least two problems open to pursue for the Si vacancy:

(i) Experiment finds the tetragonal symmetry breaking to be dominant at zero
pressure [3]. Even though theory has confirmed this result for the singly negative
charge state in a symmetry-unrestricted optimization [7], the JT parameters for the
alternative trigonal distortion remain to be calculated.

(ii) We need to study the behaviour of the coupling of the JT parameters to
other modes in the solid. The general situation of a coupling of the IT coefficients
to quadratic modes was investigated by Leihr and Ballhausen in 1957 [8]. In the
theoretical literature on the Si vacancy there is mentioned a variation of the tetragonal
JT parameter with the breathing mode [4, 9-11], but this result is only commented on
superficially [12-15]. Messmer and Watkins presented a more detailed picture in an
extended Huckel theory calculation on the vacancy in diamond [16).

In this paper we will attack the coupled JT problem for both tetragonal and
trigonal distortions. We calculate trends of all JT parameters using ab inftio locai-
density-functional theory. We deal with the artificial superceli-induced dispersion
and splitting of the JT levels by introducing what we call ‘the degenerate k-point
approximation’ (DkA).

The organization of this paper is as follows. In section 2 we discuss the
computational method. We give results regarding the symmetric configuration in
section 3. In section 4 we apply a correction to our raw data according to the Dka.
In sections 5 and 6 we investigate the symmetry-breaking tetragonal and trigonal
parameters, respectively. In section 7 we compare the JT energies of these two
distortions. Section 8 examines the effects of a coupled IT system and section 9
concludes the paper.

2. Calculational details and the degenerate k-point approximation

The computations were performed within the framework of density-functional theory
using the local-density approximation (LDA) combined with Hamann—Schluter-Chiang
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pseudo-potentials (and a matrix diagonalization program) and Kleiman—Bylander
pseudo-potentials (and a conjugate gradient program) and the supercell method [17].
A 7 Ryd plane wave cutoff was utilized (we tested our results up to 11 Ryd), and the
supercell lattice constant was frozen at the experimental value. Our calculations were
performed in supercells with 32 and 64 atoms. The breathing and T distortions of
the vacancy nearest neighbours were fixed. The other atoms were relaxed until the
corresponding forces were less than 0.1 eV A-1/atom. The JT potential was calculated
by taking 2 of the electronic level splitting and dividing by the distorting distance
(about 0.25 A). The spring constants were calculated from the energy differences of
the distorted and undistorted states. Ali IT parameter calculations were performed in
the doubly positive charge state.

In the supercell approximation, two spurious effects make it difficult to extract
the JT parameters. First, the periodicity introduces an artificial dispersion of the
degenerate T states (0.5-1.0 eV in supercells of 32-64 atoms). This destroys the
T effect and makes it, at best, a pseudo-IT effect, second, a “supercell material’ (in
our case, the crystal unit cell consists of N §i atoms and a vacancy) has symmetry-
lowering-induced electronic splittings of its own (analogous to strain-induced band
splittings) that interfere with the local IT effect.

There are at jeast two ways to deal with these obstacles. One way is to try to
filter out these effects using a simpler model calculation [18]. This is, however, usually
not ab initio and the dispersion from the simpler model may be different from the
dispersion of the LDA calculation. In this paper we introduce a second alternative
which we call the ‘degenerate k-point approximation (DkA). This is a substantial
improvement over the procedure in, for example, {7] in which the spurious supercell-
induced effects were not considered.

There are two features to the DkA. Firstly, we perform our calculations at k-
points for which the JT relevant undistorted states (for example, the t, states of
the Si vacancy) are degenerate. This allows us to see the degencracy lifted by an
amount linear in the symmetry breaking JT distortions. Secondly, if we want to obtain
the pure JT effect, we need to understand and separate out the ‘supercell material’
symmetry-lowering-induced contribution to the splittings.

Let us first discuss the case of the supercell being cubic. Then the little group
of the degenerate k-point turns out to be T, which is the same as the point group
of the vacancy. Thus the electronic bands fall in the same pattern of representations
as would the states of the truly isolated vacancy. In particular, the true vacancy
t, states form a three-dimensional representation. In the supercell approximation,
extended parts are added to these states and the final extended wavefunctions, at
the degenerate k-point, also form a three-dimensional representation. Because of
the equivalent symmetry groups, the splittings induced by the symmetry breaking will
divide the representations into identical collections of smaller representations. For
example, tetragonal and trigonal symmetry breakings will divide the three degenerate
states into a singlet and a doublet, both for the true vacancy states and for the
extended superceil states.

If the supercell is not cubic, and the periodic arrangement of the vacancies has a
symmetry lower than Ty, the symmetry groups will no longer be equivalent. Thus the
bands at the degenerate k-point may only be accidentally degenerate and the splittings
induced by the symmetry breaking will divide the representations into potentially
different collections of smaller representations, To study the IT effect under these
conditions, it is most convenient to pick a JT distortion that keeps the dimensionality
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of the broken point group as high as possible, ie. for the 32-atom cell, we need
to choose one of the trigonal distortions. If we use the one directed along the Gy,
axis of symmetry, the triply (accidentally) degenerate states split into a doublet and a
singlet, just as for the trigonal distortion of the vacancy. If we used another trigonal
distortion, the symmetry of the unit cell would be lowered and we would obtain three
different singlet states.

The ‘supercell material’ and JT effects can be approximately separated since they
act differently as a function of the breathing mode. While the extended effects are
relatively insensitive to changes in the local breathing mode (corresponding to small
changes refative to the size of the unit cell), the local T effect is very sensitive
(corresponding to changes comparable to the size of the vacancy). As we separate
the atoms from each other, the local JT effect disappears, leaving us with the pure
‘supercell material’ symmetry breaking. After performing a calculation for large
breathing modes we then subtract the effects of the ‘supercell material’ symmetry
breaking and end up with the true Jocal IT parameters.

For each individual calculation one degenerate k-point is used. We will study the
quality of the DkA by using two different supercells, of 32 and 64 atoms, and two
different degenerate k-points for each supercell. We hope to show that consistent
resuits can be obtained already with our 32-64 atom unit cells. (As the size of the
unit cell goes to infinity the approximation becomes exact, of course.) Thus for the
32-atom cell, the (0.25, 0.25, 0.25), in units of reciprocal lattice vectors (S(32), for
short), and I" (I'(32)) points were used which gave gap states degenerate to within
0.02 eV and 0 &V, respectively (the former dividing into one singlet and one doublet
from the C,, symmetry of the little group). This is in contrast with the 1, dispersion
of a general k-point of 0.5-1.0 eV. For the 64-atom cell the (0.5, 0.5, 0.5) (T(64),
for short) and I" (['(64)) points were used both with completely degenerate t, states
(both bave little groups of T, symmetry).

This work represents one of the first occasions that the supercell method has
been applied to study properties of the symmetry breaking of degenerate point-defect
states [18, 19).

3. Results of symmetric gcometries

3.1. The breathing mode

Let us study the structura] quality of the DkA and calculate the breathing mode
coordinate and spring constant. Previous work indicates that the breathing mode
coordinate minimum is controversial {20-22]. Baraff er a/ [9] find a spring constant of
7.5 eV A-2 while Larkins and Stoneham [23] give a value of 4.0 eV A~2, both groups
using valence force fields. Scheffler e al [24] give a value of 29 12 eV A2 and
experimental estimates by Deleo et af [25] give 20 and 27 eV A2, We calculated the
energy of the 42 state as a function of the breathing mode coordinate and the results
from the four calculations are shown in table 1. We find a spread of energy minima
from 220 to 2.57 A, and a spread in spring constants from 3.2 to 99 €V A~2, If we
average the four values with equal weight we find the energy minimum at 2.4+0.2 A
and a spring constant of 7+ 3 eV A~2 [26,27).

Although we cannot state whether the 42 charge state expands or contracts the
lattice, the difference in size as a function of pressure should be more accurate due to
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Table 1. Breathing mode coordinate and spring constant for different degenerate k-
points.

k-point By, (A) kg (eV A7)

) 220 32
S(32) 245 8.6
I(64)  2.56 5.6
T64) 257 9.9

cancellation of errors. Using the T(64) point we calculated the change in the value
of the breathing mode coordinate B as we imposed pressure by changing the size of
the unit cell. A 5% decrease in the size of the unit cell resulted in a 19% decrease in
B. This gives us a displacement ratio of about four which supports an earlier finding
that B is very sensitive to pressure [28). In addition we notice the curious fact that
the bonds of the vacancy’s nearest-neighbour atoms are able to extend and contract
by a large amount (for example, at B = 2.53 A these bonds have stretched by 8%).

3.2. Electronic states

While there is no experimental measurement of the optical transition energy of the
t, states, theory generally places the states near mid-gap (see, for example, [9]). We
find some discrepancies between the different degenerate k-points: the t, states lie
at different points in the gap in the different calculations. Thus the S(32) and T(64)
points have t, states about 1 eV separated from the extended states above and below,
while both T" points have t, states only 0.18 €V away from the lowest conduction
band state. This allows the t, states at I' to mix with the conduction bands and lose
some lone-pair character. Indeed, the t, states at I"(32) are less localized on the four
vacancy neighbours than those at 8(32) (35% and 49%, respectively, by integrating
the charge around the atoms). Furthermore, at I'(32) there are three states appearing
above the bottom of the conduction band that are also degenerate and also have a
significant charge density on the vacancy neighbours, another sign of mixing of the t,
levels with the conduction bands.

Finally, we plot the energy change of the t, states as a function of B in figure 1,
which should be accurate due to error cancellation. Indeed, our values are in good
agreement with those of [9] and [10] as shown, and [24] and [31] (not shown).
Consistent with this result, B decreases by 0.3 A as we completely fill up the t, states
(charge state —4) for the S(32)-point calculation [32Z]. Note that the B deformation
potential (the derivative of the energy w/r to the breathing coordinate) seems to go
through a maximum around 2.4 A

4. Raw data and the separation of the local JT contributien

From our calculations at different depgenerate k-points we obtain the combined IT and
extended-state energy splittings as a function of the breathing coordinate B, shown
in figures 2 and 3. We notice that all curves give consistent trends for small B. This
shows that we obtain consistent results for the k-point-independent local JT effect.
The curves are offset from each other by different amounts resulting from different
wave functions extending between the periodically repeated vacancies. To get the true
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Figure 2. Raw data of Vs as a function of the Figure 3. Raw data of Vi as a function of the
breathing mode coordinate B. breathing mode coordinate B.

IT splittings we should subtract the contribution of the splitting at large B. For the
trigonal distortion, this operation is simple, since the splittings in the large unit cell
become constant. We perform this operation for the data from the T(64) calculation
and we obtain our prediction for the trigonal IT potential shown in figure 5.

For the tetragonal distortion, the large-B splittings keep changing rather than
becoming constant. Thus it is now much harder to separate the JT symmetry breaking
from the supercell symmetry breaking. We content ourselves with a two-parameter
fit to the splittings at large B values. We fit these from the data at 3.0 A and above.
The correction we obtain is rather large (about 0.5 eV for the largest and smallest
values of B). The result of the separated tetragonal IT potential is shown in figure 4.

5. Tetragonal JT parameters

We considered the energy parameters associated with the tetragonal (©) and
trigonal (Q) modes of symmetry breaking. The notation and coordinates of these
displacements have been given elsewhere [5]. All calculations were performed in the



Si vacancy: pressure-sensitive Jahn-Teller system 1869

0.2 0.1
~—0.2 —_
=G <%
>-0.6 01
2 L
® —1.0 # Thiswork] 5~0.3
= —1.4} ® Baraff =
O Lipari
—-1.8 ' -0.5 : ' :
1.2 1.8 24 3.0 3.6 16 20 =24 28
B (A) B(4)
Figore 4 Corrected Vg as a function of the Figure 5 Corrected Vg as a function of the
breathing mode coordinate B. breathing mode coordinate B.

+2 charge state, for which there are no electrons in the degenerate electronic states.
Let us begin by considering the © mode. _

Earlier calculations by Baraff er al [9] give kg = 3.7 eV A2 and V, =
~1.12 eV A-! (the latter value for B = 2.35 A; for B = 2.55 A we calculate
Vg = —0.76 €V A~ from their data). The sign indicates that for a positive distortion,
defined as a pairing [9], a single electronic state referred to as B, moves down and
two E states move up. Conflicting values of V; = —4 and —0.5 eV A-1 are given
by Kirton et al [11,33], and of Vy = —0.3 and —8 eV A~! by Jaros e af [31,34].
From Kelly et af [20] we calculate kg = 2.8 €V A-2 and abs(V,) =0.79 eV A-lat
B = 2.15 A From Lipari e al [10] we calculate values of V, = —1.70, —1.39
and —0.82 eV A-! at B = 2.05, 235 and 2,55 A, respectively. Experimental
estimates for kg are 1.7 and 1.3 eV A-2 [25]. A simple central-force madel gives
kg = 11.9 eV A~2 [30,35]. A semi-empirical calculation of the vacancy in diamond
shows a strong dependence of the JT potentials on the breathing mode coordinate
[16].

Our results for kg and V as a function of the breathing coordinate B are
shown in figures 6 and 4, respectively. We see that kg increases with the breathing
coordinate. This is consistent with the © distortion becoming more difficult as the
increasingly planar sp?-hybridized geometry prevents the in-plane © distortion. Notice
the anomalous small value of kg at B = 1.77 A. It is presumably a result of the
failure of the vacancy’s second-nearest-neighbour atoms to respond to the breathing
distortion. This gives rise to bonds to the nearest neighbours that have been stretched
by 8% to 2.53 A, and thereby considerably weakened. This result could not have been
arrived at using the simple Keating force model of [9].

For B of about 2.4 A, V,, decreases with the breathing coordinate. As we see, the
calculations in [9] and [10] also suggest a similar dependence [13, 14]. Interestingly,
for very small B, V levels off and decreases. This may be due to the electronic
states having a certain minimal spacial extent from minimizing the kinetic energy,
and as the atoms move closer and closer, the wavefunctions cease to respond to
the symmetry-breaking movements of the vacancy’s neighbours. As stated above,
we noticed a similar behaviour of the deformation potential that seemed to have a
maximum around B = 2.4 A, which is where we also see the largest derivative in Vj,
[36].
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Figure 6. kg as a function of the breathing mode Figore 7. kg as a function of the breathing mode
coordinate B, coordinate B,

Our charge densities are similar to earlier work (see, for example, [9]). As found
in [7], the intercellular overlap along the [110] direction is significant.

Our error analysis cannot identify the source of discrepancy with the data in [9]
and [10] (see [37]). The effects of our finite supercell size seem small, and will no
doubt soon be made even smaller with use of the new parallel algorithms that allow
for larger supercells [38]. A parallel calculation is especially simple to perform since
V, is almost independent of relaxations away from the nearest neighbour Si atoms
and forces would not need to be calculated [37].

6. Trigonal JT parameters

Earlier calculations of the trigonal IT potential give the value abs(V,) = 4.5 eV A-1
[11] (the sign convention is not clear). A simple nearest-neighbour central-force
model gives kg = 5.95 eV A-? [30,35], and a large-cluster valence-force model gives
ke = 0.97 eV A~% [30,39]. A Keating model gives kg = 1.82 and 3.62 eV A2 for
two different trigonal distortions [9,40]. It is customary to consider the ratio kg /ke:
for a central force model, in which the only atoms moved are the vacancy’s nearest
neighbours, and for which the equilibrium B value is taken to be the 5i-Si bond
Jength, the ratio of the force constants is exactly 0.5 [30, 35]).

Our results for kg and V, are shown in figures 7 and 5, respectively. We find

that the ratio of k,/kg is somewhat smaller than 0.5 near 2.35 A, and it decreases
for smaller B. Abs(V,,) increases as we lower B, as does V.

In the trigonal distortion considered one atom moves straight out from the vacancy
while the three other atoms move closer to (but not straight to) the centre. The charge
densities show that the singlet state consists primarily of a lone pair on the atom that
moves outwards. The movement causes an increase in sp? hybridization that increases
the relative s content of the state and therefore lowers its energy.

This ‘model” predicts that the trigonal JT potential should be negative until the
breathing mode is so large that it forces the vacancy’s neighbours to have their three
bonds in a plane. If the dangling bonds are still interacting, further increasing the
breathing mode coordinate would decrease the sp? hybridization and thus change the
sign of the trigonal JT potential. A sign change is seen in earlier semi-empirical
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calculations in diamond, but it takes place at too low a value of the breathing
coordinate to be consistent with our model [16].

7. Calculated JT energies

Usp, the JT contribution to the effective electronic correlation energy U g (see section
1), is shown in figure 8 for the tetragonal and trigonal modes. Both values of Uy
are largest at small values of B. The two energies are similar around B = 2.4 A,
which is consistent with experiment [3]. For smaller B, the tetragonal energy comes
to dominate [41].

0.0
-0.1
—-0.2
-0.3
~0.4}

-0.5 - ' -
1.6 2.0 2.4 2.8

B (4)
Figure 8 Calculated values of the T contribution to the effective electronic correlation
energy, Unr = -V2/E.

Energy (eV)

* B
= Q

From figure 8 we find that the tetragonal IT energy for small B can be quite large.
If we lower the lattice constant of the sample by up to about 10% (corresponding
to a pressure of about 125 kBar), at which point Si takes a complete SG-tin structure
[42], then the corresponding breathing mode coordinate would decrease by about
40% (0.9 A). Thus we could reach JT energies of 0.5 eV. At this point, the split
B, state with two electrons has moved down by —2V?%/k or —2Uy, eV and the
E states have moved up by Up eV. Thus both states have left the gap. Finally,
the barrier for reorientation from one broken-symmetry configuration to another is
Uge = 0.75(Eq ~ Eg) [3). For small B this difference increases and we predict the
reorientation should become more difficult.

In [9] the effect on the effective electronic correlation energy U, from the B
deformation potential was calculated:

Epp = —-nV§/2kg @
and

Upp = —Vip/kp )]
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where Epp and Upp are the B deformation potential energy and contribution to
U4, Yespectively, Vip is the B deformation potential and kg is the breathing mode
spring constant. These authors found that Upp, was rather small, only about 0.02 eV.
Thus we do not further consider this correction.

Finally, let us consider the effects of the IT symmetry lowering on the different
charge states. Experimentally the tetragonal energy dominates for the +1 and 0 states.
The trigonal distortion becomes secondary and only occurs for the singly negative
charge state {3,43]. The symmetry lowerings of the states with more electrons can be
thought of in terms of an electron-hole symmetry that takes t, states with N electrons
and maps them onto t, states with /¥ holes. Thus the (—2) charge state, which has
2 holes in the t, states, is mapped onto the neutral state which has 2 electrons. It
should therefore undergo a pure tetragonal distortion [43]). If we continue to fill
up the t, states the —3 state should undergo a smaller tetragonal distortion and the
—4 state should have full Tp, symmetry. The high-occupancy —4, —3 and —2 charge
states should have a large Uy associated with them, just as the +2, +1 and 0 states
do. In fact, because of the decrease in B as we add electrons, the Uy for the —4,
—3 and —2 states should be the larger [44].

8. Discussion of the coupled JT system

Leihr and Ballhausen {8] considered the effects of coupling the 5T distorting modes
to other modes in a doubly degenerate system. Here we summarize (and simplify
somewhat) the case of a degenerate system for which the JT distortion is coupled to
a symmetric breathing distortion.

The Hamiltonian for this system, up to second order in x and B is (while
neglecting the coupling between B and the electronic occupation as before)

H=k2?/24 kg(B - By)?*/2+ nVz + nlzB (6)
where k and V' are the IT parameters, kg is the B-mode spring constant, n is the
number of electrons in the JT state and I" is the coupling between the JT and B
modes. The breathing coordinate minimum is at B = B, for n = 0. Let us integrate
out the breathing mode coordinate by setting its derivative to be zero, ie.

B—- By=-nlz/kg. )
The new Hamiltonian we obtain is

H' = 0.5kz*(1 — n%) + nVaz 6))
where

e = I'?[2kq. ©)

The new breathing-mode coordinate is

B = By= (nTnV/E}/[(1- n%)/q] = 2n%e(V/T) /(1 - nle).
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The effect of the coupling is accordingly to shift the breathing-mode coordinate away
from B, and to soften the effective spring constant of the mode x by the factor
(1 — n%). Note that dependence upon the occupation factor = makes these effects
largest in the doubly occupied state. Interestingly, if the coupling I' is large enough
the Hamiltonian starts to diverge and the quadratic approximation fails. In this case
one could obtain two sets of JT metastable states [8].

The negative effective electronic correlation energy is enhanced by the coupling
I'. To first order in ¢,

U = =(V/k)(1 + Te). (10)

Let us calculate the correction factor for the Si vacancy and the tetragonal state. We
use the following parameters: T' = 0.6 eV A"% k=4¢eV A-%; ¢ =10eV A-% and
obtain € = 0.004. Accordingly, we have the case for which the Hamiltonian (6) is
stable. U is enhanced by only 3%.

Thus we find that while the pressure-induced effects of the JT coupling to B are
large (see section 7), the ‘internal’ effects are small,

9. Conclusion

The IT potential coupling to the breathing mode has several consequences for the Si
vacancy. We predict that increasing the pressure will significantly increase the size
of Uy, as will increasing the charge on the vacancy. U of the —4, —3 and -2
charge state combination of the Si vacancy would be larger than for the known 42,
+1 and neutral charge state combination. These highly negative charge states may
possibly be realized if there is a charge-compensating weakly interacting impurity
present. Differently sized vacancy-like substitutional impurities should show size-
dependent JT energies [45]. The reorientation energy from one symmetry-broken
state to another should increase for sufficiently large pressures. The ‘internal’ effects
(previous section) of the coupling were however small, only amounting to a change
in Up of a few percent. Finally, the sensitivity of the breathing mode coordinate to
pressure indicates a sensitivity of the bond lengths and bond strengths of the three
back bonds to the vacancy’s nearest neighbours. This gives us a model system for
which we easily can manipulate bond strengths.

Other potentially similar systems include the Si (100) surface which has quasi-
JT distorting dangling bonds. The symmetry breaking is shown in the tilting of the
dimer bonds and this tilt angie should be sensitive to pressure changes. Other Peierls
distorting systems like polyacetylene should show pressure dependencies. Also, while
the JT effects of the Si divacancy seem to be small at zero pressure [46], they may
become more substantial under pressure. We would expect the JT potentials of these
and other JT systems to first increase and then decrease with pressure.

Finally, one should investigate other IT systems to get an overall picture of the
importance of JT couplings to other modes, and to see whether this coupling is always
small or whether it can be as large as to change the stability of the IT distortion (see
section 8).
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